OpenFOAM structure: Linux environment, user environment variables, directory and file structure, units, etc.

Eric Paterson egp@vt.edu

Kevin T. Crofton Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University

Outline

- 1 Linux environment
- 2 Installation location
- 3 User directory organization
- 4 How do I use OpenFOAM?
- 5 Environment variables
- 6 Environment variables
- 7 OpenFOAM "settngs"
- 8 OpenFOAM aliases
- 9 Dimensional units

Linux environment

- Linux is the preferred operating system for OpenFOAM, and parallel HPC and large-scale scientific computing in general.
- Although
 - OpenFOAM can be built on Mac, since OSX is essentially a flavor of UNIX.
 - OpenFOAM on Windows is trickier, but possible through a number of VMs and dual-boot systems.
 - We are using a Docker container with a Linux VM and running OpenFOAM in that environment.
 - There are other similar options available from other sources, e.g., : https://cfd.direct/openfoam/download/
- Interesting recent development is cloud computing services, such as Amazon Web Services (AWS) EC2, https://cfd.direct/cloud/aws/

OpenFOAM Distributions

- There are a number of OpenFOAM forks. The latest versions and sources include:
 - OpenFOAM v4.1 from CFD Direct https://cfd.direct
 - OpenFOAM v1612+ from ESI, owners of the OpenFOAM trademark http://www.openfoam.com
 - OpenFOAM-extend 3.2 from a loose group of academics and industry CFD experts, https://sourceforge.net/projects/openfoam-extend/
 - Caelus from Applied CCM http://www.caelus-cml.com
 - ... plus a few more smaller players
- We will use v1612+ from ESI since it provides a Docker containerized VM for Windows users.

OpenFOAM Installation

- Installation of OpenFOAM from source is beyond the scope of this workshop.
- For most users, they will either download binaries, or have their local HPC administrators build it into a module that can be loaded at login. Note: OpenFOAM is on all DOD HPCMP machines.
- Advantage of building from source, is that compiler options and parallel MPI libraries can be optimized for specific hardware.
- On Virginia Tech computer CASCADES, v1612+ is loaded with the following commands:
 - ${\tt module\ load\ gcc/5.2.0\ openmpi/2.0.0\ python\ OpenFOAM/v1612+}$
 - . \$OPENFOAM_DIR/OpenFOAM-v1612+/etc/bashrc
- These are typically put in your \$HOME/.bashrc so that OpenFOAM is loaded when you login.
 \$\text{\$\text{WIRS}\$}\$

Installation location

- OpenFOAM is installed at \$WM_PROJECT_INST_DIR
- That environment variable points to:

Cascades:

/groups/arc/apps/cascades/opt/apps/gcc5_2/openmpi2_0/OpenFOAM/v1612+

Docker VM: /opt/OpenFOAM

- Users do not have write privileges to this tree. Users can run compiled applications/utilities and link to compiled libraries.
- Custom code (e.g., ESOP) has to be compiled somewhere in the users \$HOME directory structure.
- Users cannot run the tutorials in the installation directory tree since they don't
 have write permissions. This is the reason that we copied the tutorials to
 \$FOAM_RUN, which points to a directory in the user space:

Cascades: /home/egp/OpenFOAM/egp-v1612+/run

Docker VM: /Users/egp/OpenFOAM/docker-v1612+/run

User directory organization

■ The users OpenFOAM space often includes the following directories:

```
[17:55:32][egp@calogin1:egp-v1612+]50046$ ls applications libraries packages platforms run
```

- Where these directories are defined as:
 - applications : location for custom application source code
 - libraries : location for custom library source code
 - packages: location for larger software suites, like ESOP and swak4Foam.
 - platforms: location of user binaries. \$FOAM_USER_APPBIN and \$FOAM_USER_LIBBIN point to this directory.
 - run: A place for users to organize their personal cases. \$FOAM_RUN points to this folder.

How do I use OpenFOAM?

- First step is to get your environment set—up so that paths and variables are properly set.
- This is accomplished by sourcing the bashro file in the OpenFOAM source code with the the following command (for Bash shell uses who are installing OpenFOAM in their home directory):
 - % source \$HOME/OpenFOAM/OpenFOAM-v1612+/etc/bashrc
- For users on large systems with central installations, loading a module is now the typical approach. The following commands would be in the users \$HOME/.bashrc file.
 - module load gcc/5.2.0 openmpi/2.0.0 python OpenFOAM/v1612+
 - . \$OPENFOAM_DIR/OpenFOAM-v1612+/etc/bashrc
- The module load command loads gcc, openmpi, python and OpenFOAM. Exact details can be found by using the module spider OpenFOAM command Virginia Tech

Environment variables

If everything goes smoothly, you should now have a lot of new environement variables and aliases.

```
[18:56:53][eqp@calogin1:esop]50070$ echo $WM
$WM ARCH
                       $WM COMPILER
                                               $WM DIR
                                                                      $WM MPLIB
                                                                                              $WM_PROJECT_DIR
$WM ARCH OPTION
                       $WM COMPILER LIB ARCH
                                               $WM LABEL OPTION
                                                                      $WM OPTIONS
                                                                                              $WM PROJECT INST DIR
                       $WM COMPILER TYPE
$WM CC
                                               $WM LABEL SIZE
                                                                      $WM_OSTYPE
                                                                                              $WM PROJECT USER DIR
$WM CFLAGS
                       $WM CXX
                                               $WM LDFLAGS
                                                                      $WM PRECISION OPTION
                                                                                              $WM PROJECT VERSION
$WM COMPILE OPTION
                       $WM CXXFLAGS
                                               $WM LINK LANGUAGE
                                                                      $WM PROJECT
                                                                                              $WM THIRD PARTY DIR
[18:56:53] [egp@calogin1:esop]50070$ echo $FOAM
$FOAM APP
                                                          $FOAM SITE LIBBIN
                                                                             $FOAM USER APPBIN
                   $FOAM INST DIR
                                      $FOAM RUN
$FOAM APPRIN
                   $FOAM JOB DIR
                                      $FOAM SETTINGS
                                                          $FOAM SOLVERS
                                                                             $FOAM USER LIBBIN
$FOAM ETC
                   $FOAM LIBBIN
                                      $FOAM SIGFPE
                                                          $FOAM SRC
                                                                             $FOAM UTILITIES
$FOAM EXT LIBBIN
                   $FOAM MPI
                                      $FOAM SITE APPBIN
                                                          $FOAM TUTORIALS
```

Aliases can be discovered using the following command % alias

Environment variables

- If everything goes smoothly, you should now have a lot of new environment variables.
- These are set in this file: \$WM_PROJECT_INST_DIR/OpenFOAM-v1612+/etc/config.sh/settings

```
[18:56:53] [egp@calogin1:esop]50070$ echo $WM
$WM ARCH
                       $WM_COMPILER
                                               $WM DIR
                                                                      $WM MPLIB
                                                                                              $WM PROJECT DIR
$WM ARCH OPTION
                       $WM COMPILER LIB ARCH
                                               $WM LABEL OPTION
                                                                      $WM OPTIONS
                                                                                              $WM PROJECT INST DIR
$WM CC
                       $WM COMPILER TYPE
                                               $WM LABEL SIZE
                                                                      $WM OSTYPE
                                                                                              $WM PROJECT USER DIR
$WM CFLAGS
                       $WM CXX
                                               $WM LDFLAGS
                                                                      $WM PRECISION OPTION
                                                                                              $WM PROJECT VERSION
$WM COMPILE OPTION
                       $WM_CXXFLAGS
                                                                                              $WM THIRD PARTY DIR
                                               $WM LINK LANGUAGE
                                                                      $WM PROJECT
[18:56:53] [egp@calogin1:esop]50070$ echo $FOAM
$FOAM APP
                   $FOAM INST DIR
                                      $FOAM RUN
                                                          $FOAM SITE LIBBIN
                                                                             $FOAM USER APPBIN
$FOAM APPBIN
                   $FOAM JOB DIR
                                      $FOAM SETTINGS
                                                          $FOAM SOLVERS
                                                                             $FOAM USER LIBBIN
$FOAM ETC
                   $FOAM LIBBIN
                                      $FOAM SIGFPE
                                                          $FOAM SRC
                                                                             $FOAM UTILITIES
$FOAM EXT LIBBIN
                   $FOAM MPI
                                      $FOAM_SITE_APPBIN
                                                          $FOAM TUTORIALS
```


OpenFOAM "settings"

- In addition to environement variables, your path will have additions which will allow your system to be aware of the location of application, utility, and library binaries.
- The important path additions include:
 - \$FOAM_APPBIN this points to the OpenFOAM application binaries
 - \$FOAM_LIBBIN this points to the OpenFOAM library binaries
 - \$FOAM_USER_APPBIN this points to the user's application binaries
 - \$FOAM_USER_LIBBIN this points to the user's library binaries

OpenFOAM aliases

- Aliases can be discovered using the following command % alias
- Aliases are set in this file:

\$WM_PROJECT_INST_DIR/OpenFOAM-v1612+/etc/config.sh/aliases

- alias app='cd \$FOAM APP'
- alias foam='cd \$WM PROJECT DIR'
- alias foamSite='cd \$WM_PROJECT_INST_DIR/site'
- alias lib='cd \$FOAM LIBBIN'
- alias run='cd \$FOAM RUN'
- alias sol='cd \$FOAM SOLVERS'
- alias src="cd \$FOAM SRC"
- alias tut='cd \$FOAM TUTORIALS'
- alias util='cd \$FOAM UTILITIES'

Dimensional units [1]

- In general, algebraic operations require consistent dimensional units
- Specifically, addition, subtraction, and equality are only physically meaningful if each of the terms of a governing equation have the same dimensional units
- As a safeguard, OpenFOAM attaches dimensions to field data and physical properties and performs dimension checking on any scalar, vector, or tensor operation
- Dimensions are set for each field variable or property using a set of 7 scalars delimited by square brackets. For example:
 - Velocity (0/U): [0 1 -1 0 0 0 0]
 - Kinematic viscosity (/constant/transportProperties): [0 2 -1 0 0 0 0]
- Each scalar value within the brackets corresponds to the power of each of the base units shown in following table

Dimensional units [2]

 $[0 \ 2 \ -1 \ 0 \ 0 \ 0]$

No.	Property	SI unit	USCS unit
1	Mass	kilogram (kg)	pound-mass (lbm)
2	Length	metre (m)	foot (ft)
3	Time	— — — second (s) — — —	
4	Temperature	Kelvin (K)	degree Rankine (∘R)
5	Quantity	kilogram-mole (kgmol)	pound-mole (lbmol)
6	Current	— — — ampere (A) — — —	
7	Luminous intensity	———— candela (cd)	

If your units are inconsistent, either in an input file, dictionary, or the source code for an application/utility, OpenFOAM will fail with an "incompatible dimensions for operation" error message

Dimensional units [3]

- Note that OpenFOAM does require some dimensioned physical constants for certain calculations (e.g., Universal Gas Constant R, Standard Pressure and Temperature)
- If you want to check, dimensioned constants are specified in \$WM_PROJECT_INST_DIR/OpenFOAM-v1612+/src/OpenFOAM/global/constants
- Finally, note that:
 - OpenFOAM dimension checking can be turned off in the main controlDict and is not recommended
 - It is possible to perform dimensionless calculations by appropriately constructing the governing equations and correctly setting field variable / property dimensions. However, this can be very tricky and is not recommended.
 - Dimension checking is powerful quality-control mechanism, and all simulations should be performed using proper dimensions.