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ABSTRACT 

A method is developed for calculating stiffness influence co-
efficients of complex shell-type structures. The object is to pro-
vide a method tha t will jdeld structural data of sufficient accuracy 
to be adequate for subsequent dynamic and aeroelastic analyses. 

Stiffness of the complete structure is obtained by summing 
stiffnesses of individual units. Stiffnesses of typical structural 
components are derived in the paper. Basic conditions of con-
tinuity and equilibrium are established at selected points (nodes) 
in the structure. Increasing the number of nodes increases the 
accuracy of results. Any physically possible support conditions 
can be taken into account. Details in setting up the analysis can 
be performed by nonengineering trained personnel; calculations 
are conveniently carried out on automatic digital computing 
equipment. 

Method is illustrated by application to a simple truss, a flat 
plate, and a box beam. Due to shear lag and spar web deflection, 
the box beam has a 25 per cent greater deflection than predicted 
from beam theory. I t is shown that the proposed method cor-
rectly accounts for these effects. 

Considerable extension of the material presented in the paper 
is possible. 

(I) INTRODUCTION 

PRESENT CONFIGURATION TRENDS in t h e des ign of 
high-speed aircraft have created a number of 

difficult, fundamental structural problems for the 
worker in aeroelasticity and structural dynamics. The 
chief problem in this category is to predict, for a given 
elastic structure, a comprehensive set of load-deflection 
relations which can serve as structural basis for dynamic 
load calculations, theoretical vibration and flutter 
analyses, estimation of the effects of structural deflec-
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tion on static air loads, and theoretical analysis of aero-
elastic effects on stability and control. This is a prob-
lem of exceptional difficulty when thin wings and tail 
surfaces of low aspect ratio, either swept or unswept, 
are involved. 

I t is recognized tha t camber bending (or rib bending) 
is a significant feature of the vibration modes of the 
newer configurations, even of the low-order modes; 
in order to encompass these characteristics it seems 
likely tha t the load-deflection relations of a practical 
structure must be expressed in the form of either de-
flection or stiffness influence coefficients. One ap-
proach is to employ structural models and to determine 
the influence coefficients experimentally; it is antici-
pated tha t the experimental method will be employed 
extensively in the future, either in lieu of or as a final 
check on the result of analysis. However, elaborate 
models are expensive, they take a long time to build, 
and tend to become obsolete because of design changes ; 
for these reasons it is considered essential tha t a con-
tinuing research effort should be applied to the devel-
opment of analytical methods. I t is to be expected 
tha t modern developments in high-speed digital com-
puting machines will make possible a more fundamental 
approach to the problems of structural analysis; we 
shall expect to base our analysis on a more realistic 
and detailed conceptual model of the real structure 
than has been used in the past. As indicated by the 
title, the present paper is exclusively concerned with 
methods of theoretical analysis; also it is our object to 
outline the development of a method tha t is well 
adapted to the use of high-speed digital computing 
machinery, 

(II) R E V I E W OF E X I S T I N G M E T H O D S OF STRUCTURAL 

ANALYSIS 

(1) Elementary Theories of Flexure and Torsion 

The limitations of these venerable theories are too 
well known to justify extensive comment. They are 
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adequate only for low-order modes of elongated struc-
tures. When the loading is complex (as in the case 
of inertia loading associated with a mode of high order) 
refinements are required to account for secondary 
effects such as shear lag and torsion-bending. 

(2) Wide Beam Theory: Schuerch1 

Schuerch has devised a generalized theory of com-
bined flexure and torsion which is applicable to multi-
spar wide beams having essentially rigid ribs. Torsion-
bending effects are included bu t not shear lag. I t is 
expected tha t wide beam theory will be used extensively 
in the solution of static aeroelastic problems (effect of 
air-frame flexibility on steady air loads, stability, etc.). 
However, the rigid rib assumption appears to limit its 
utility rather severely for vibration and flutter anal-
ysis of thin low aspect ratio wings. 

(3) Method of Redundant Forces: Levy, Bisplinghoff and 
Lang, Langefors, Rand, Wehle and Lansing2^ 

These writers have contributed the basic papers 
leading to the present widespread use of energy prin-
ciples, matrix algebra, and influence coefficients in the 
solution of structural deflection problems. Redundant 
internal loads are determined by the principle of least 
work, and deflections are obtained by application of 
Castigliano's theorem. The method is, of course, 
perfectly general. However, the computational diffi-
culties become severe if the structure is highly re-
dundant , and the method is not particularly well 
adapted to the use of high-speed computing machines. 
Rand has suggested a method of solution for stresses 
in highly redundant structures which might also be 
used for calculating deflections. Instead of using 
member loads as redundants , he proposes to employ 
systems of self-equilibrating internal stresses. These 
redundant stresses may be regarded as perturbations 
of a primary stress distribution t ha t is in equilibrium 
with the external loads (but does not generally satisfy 
compatibility conditions). The number of properly 
chosen redundants required to obtain a satisfactory 
solution may be considerably less than the "degree of 
redundancy." Successful application of this method 
requires a high degree of engineering judgment, and 
the accuracy of the results is very difficult to evaluate. 

(4) Plate Methods: Fung, Reissner, Bens cot er, and 
MacNeaV* 

As the trend toward thinner sections approaches the 
ult imate limit, we enter first a regime of very thick 
walled hollow structures, such t ha t the flexural and 
torsional rigidities of the individual walls make a 
significant contribution to the overall stiffness of the 
entire wing. Finally we come to the solid plate of 
variable thickness. During the past few years a sub-
stantial research effort has been devoted to the develop-
ment of methods of deflection analysis for these struc-
tural types, and impor tant contributions have been 
made by all of the aforementioned authors. 

(5) Direct Stiffness Calculation: Levy, SchuerchlQ> n 

In a recent paper Levy has presented a method of 
analysis for highly redundant structures which is par-
ticularly suited to the use of high-speed digital com-
puting machines. The structure is regarded as an 
assemblage of beams (ribs and spars) and interspar 
torque cells. The stiffness matrix for the entire struc-
ture is computed by simple summation of the stiff-
ness matrices of the elements of the structure. Fi-
nally, the matrix of deflection influence coefficients is 
obtained by inversion of the stiffness matrix. Schuerch 
has also presented a discussion of the problem from the 
point of view of determining the stiffness coefficients. 

(Ill) SOME UNSOLVED PROBLEMS 

At the present time, it is believed tha t the greatest 
need is to derive a numerical method of analysis for a 
class of structures intermediate between the thin 
stiffened shell and the solid plate. These are hollow 
structures having a rather large share of the bending 
material located in the skin, which is relatively thick 
bu t still thin enough so tha t we may safely neglect 
its plate bending stiffness. In order to cope with this 
class of structures successfully, we must base our 
analysis upon a structural idealization tha t is suffi-
ciently realistic to encompass a fairly general two-
dimensional stress distribution in the cover plates; 
and our method of analysis must yield the load-deflec-
tion relations associated with such stresses. I t is char-
acteristic of these problems tha t the directions of prin-
cipal stresses in certain critical par ts of the structure 
cannot be determined by inspection. Hence, the 
familiar methods of structural analysis based upon the 
concepts of axial load carrying members, joined by 
membranes carrying pure shear, are not satisfactory, 
even if we employ effective width concepts to account 
for the bending resistance of the skin. We should like 
to include shear lag, torsion-bending, and Poisson's 
ratio effects to a sufficient approximation for reliable 
prediction of vibration modes and natural frequencies 
of moderate order. Also, we should like to avoid any 
assumptions of closely spaced rigid diaphragms or of 
orthotropic cover plates, which have been introduced 
in many papers on advanced structural analysis. The 
actual rib spacing and finite rib stiffnesses should be 
accounted for in a realistic fashion. In summary, what 
is required is an approximate numerical method of 
analysis which avoids drastic modification of the 
geometry of the structure or artificial constraints of its 
elastic elements. This is indeed a very large order. 
However, modern developments in high-speed digital 
computing machines offer considerable hope tha t 
these objectives can be attained. 

(IV) M E T H O D OF D I R E C T S T I F F N E S S CALCULATION 

For a given idealized structure, the analysis of 
stresses and deflections due to a given system of loads 
is a purely mathematical problem. Two conditions 
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must be satisfied in the analysis: (1) the forces de-
veloped in the members must be in equilibrium and (2) 
the deformations of the members must be compatible— 
i.e., consistent with each other and with the boundary 
conditions. In addition, the forces and deflections in 
each member mus t be related in accordance with the 
stress-strain relationship assumed for the material. 

The analysis may be approached from two different 
points of view. In one case, the forces acting in the 
members of the structure are considered as unknown 
quantities. In a statically indeterminate structure, 
an infinite number of such force systems exist which 
will satisfy the equations of equilibrium. The correct 
force system is then selected by satisfying the condi-
tions of compatible deformations in the members. 
This approach has been widely used for the analysis of 
all types of indeterminate structures bu t is, as already 
noted, particularly advantageous for structures t ha t 
are not highly redundant . 

In the other approach, the displacements of the 
joints in the structure are considered as unknown 
quanti t ies. An infinite number of systems of mutual ly 
compatible deformations in the members are possible; 
the correct pa t te rn of displacements is the one for which 
the equations of equilibrium are satisfied. The con-
cept of static determinateness or indeterminateness is 
irrelevant when the analysis is considered from this 
viewpoint. This approach is the basis for many re-
laxation type analyses (such as moment distribution) 
and has been applied to the analysis of complex aircraft 
structures by Levy in the aforementioned paper. This 
will be called the method of direct stiffness calculation 
hereafter. 

After reviewing the various methods available to the 
dynamics engineer for computing load-deflection rela-
tions of elastic structures, it is concluded tha t the most 
promising approach to our present difficulties is to ex-
tend further the method of direct stiffness calculation. 
The remainder of this paper is concerned with methods 
by which t ha t extension may be accomplished. 

(V) S IMPLE EXAMPLES OF S T I F F N E S S I N F L U E N C E 
COEFFICIENTS 

(1) Elastic Spring 

If an elastic spring deflects an amount 8 under axial 
load F, Hooke's Law applies and 

F = U (1) 

Here k can be regarded as the force required to produce 
a uni t deflection; hence it can be considered to be a 
stiffness influence coefficient. 

Eq. (1) can also be writ ten as 

5 = (l/k)F = cF (2) 

where c is the deflection due to a uni t force (deflection 
influence coefficient). 
(2) Two-Dimensional Elastic Body 
Extending the above relations to the two-dimensional 
body is most conveniently accomplished by introducing 

L = LENGTH 
A=AREA 
E- MODULUS 

COS 0 X * >~ 
COS By3 /* 

(a) (b) 

FIG. 1. Typical pin-ended truss member, 

matrix notation. Eqs. (1) and (2) become, respectively, 
\F} = [K]{s] 

[K]-i{F] = [C]{F\ 

(3) 

(4) 

Here [K] is the matrix of stiffness influence coefficients. 
A typical element of [K] is kifv = force required a t i 
in the f-direction, to support a uni t displacement a t j 
in the ^-direction. If £ and rj always refer to the same 
direction, we can use the simpler form ky. In either 
case an element of [K], and also of [C], must obey the 
well-known reciprocal relations. In other words, the 
[K] and [C] matrices are symmetric, provided they 
are referred to orthogonal coordinate systems. As will 
be seen later, the symmetry condition does not apply 
if oblique coordinates are used. 

(3) Truss Member 

Fig. 1(a) shows a typical pin ended truss member. 
We wish to determine its matrix of stiffness influence 
coefficients. Loads may be applied a t points (nodes) 
1 and 2. Each node can experience two components 
of displacement. Therefore, prior to introducing 
boundary conditions (supports), [K] for this member 
will be of order 4 X 4 . 

To develop one column of [K], subject the member 
to u2 9^ 0, U\ = vi = v2 = 0. Then 

AL = u2 cos 6X = u2\ 

The axial force needed to produce AL is 

P = (AE/L)AL = (AE/L)\ u2 

The components of P a t node 2 are 

FX2 = P cos Bx = (AE/L) X2 u2 

FVi = P cos By = (AE/L) X/x u2 

Equilibrium gives the forces a t node 1 as 

Fx. 

F = 
1 V\ 

-F,. 

— F 

Eq. (3) for this member then takes the form 

\FX. AE 
L 

- X 2 

X2 

— X/x 
XfJL 

\U\\ 
)u2[ 
)vi 
\v2 

(5) 
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1*1 truss 
member 

AE 

L 

tti 

X2 

-X 2 

XM 

_ — ^ M 

Ui 

A2 

-AM 
AM 

Vi 

M2 

- M 2 

Vi 

M2J 

The other elements in [K) are found in a similar manner. 
We get 

(6) 

As given in Eq. (6), [K] is singular—that is, its deter-
minant vanishes and its inverse does not exist. This 
is overcome by supplying boundary conditions or sup-
ports for the bar sufficient to prevent it from moving 
as a rigid body. For example, we may choose u\ = 
Vi = Ui = 0, v2 5* 0. Node 1 is then fixed, while node 
2 is provided with a roller in the ^-direction. The only 
force component now capable of straining the bar is 
FVv The force in the bar and the reactions are given 
byEqs. (5) and (6). 

Any other physically correct boundary conditions 
can be imposed. In other words, once [K] has been 
determined, a solution can be found for any set of sup-
port conditions. The only requirement is that the 
structure be fixed against rigid body displacement. 

(VI) STIFFNESS ANALYSIS OF SIMPLE TRUSS 

Once stiffness matrices for the various component 
units of a structure have been determined, the next 
step of finding the stiffness of the composite structure 
may be taken. The procedure for doing this is essen-
tially independent of the complexity of the structure. 
As a result, it will be illustrated for a simple truss as 
shown in Fig. 2. 

The stiffness of any one member of the truss is given 
by Eq. (6). Since length varies for the truss members, 
this term should be brought inside the matrix. It is 
then convenient to call the elements of the stiffness 
matrix X2 = X2/length, etc. Then X2, /Z2, and X/Z repre-
sent the essential terms defining the stiffness of the 
separate truss members. These are conveniently cal-
culated by setting up Table 1. 

From the last three columns of Table 1 the truss 
stiffness matrix can be written directly. This is best 
seen by forming the truss equation [Eq. (7a) ] analogous 
to Eq. (5) for the single member. 

The formation of all columns in Eq. (7a) can be ex-
plained by considering any one of them as an example. 
The second column will be chosen. It represents the 
case for which vi ^ 0, all other node displacements = 0. 

r 

= AE 

I J 

1 1 1 1 

1 1 
2v'2£ L 

0 

0 

1 
2^2L 

1 

2A/2L 
1 

2V2£ 

1_ 

1 
2V2L 

1 
2\/2L 2y/2L 

1 
Z 

1 
~Z 

1 

"Z 

1 

z 
o 

o 

2^/2L 
1 

2\7§Z 
1 

~L 

0 

1 
4-

1 
L ' 2\/2L 

1 
~~ 2V

72L 

2 \ /2L 
1 

" 2 \ / 5L 

0 

0 

1 
" 2V

72L 
1 

2VIZ 

U\ 

Vi 

u2 

1'2 

US 

V3 

(7a) 

{F} - [K}{5} (7b) 

In this second column the ^-components of force 
are given by the /Z2 terms in Table 1; the x-com-
ponents of force are given by the X/Z terms. Thus 
Fyx is the sum of /Z2 for members 1-2 and 1-3 since these 
are strained due to displacement V\. Also FVl is —/Z2 

for member 1-2, and Fyz is — p} for member 1-3. The 

signs follow from the basic stiffness matrix given in 
Eq. (6). Since equilibrium must hold, the sum of these 
^-components of force must vanish. 

Similarly, FXl is the sum of the X# terms for members 
1-2 and 1-3. Likewise, FX2 is the negative value of 
X/Z for member 1-2. Finally FXz is —X/Z for member 
1-3. These forces must also sum to zero if equilibrium 
is to hold. 

TABLE 1 

Member 

1-2 

1-3 

2-3 

x 

0 

L 

L 

-L 

- L 

0 

Length 

L 

V2L 

L 

X 

0 

1 
V2 

1 

M 

- 1 

1 
V 2 

0 

X2 

0 

1 
2 

1 

M2 

1 

1 
o 

0 

Xji 

0 

1 
2 

0 

X2 

0 

1 
2V2L 

1 
X 

A2 

1 

z 1 
2V2L 

0 

X/2 

0 

1 
2V2L 

0 
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This process is repeated for all columns. In this way 
all possible node displacement components are taken 
into account. In each case the displacements are com-
patible ones for all members of the truss. 

A structure having various kinds of structural com-
ponents—beams as well as axially loaded members, for 
example—would be treated in the same manner. 
However, the basic stiffness matrix for each type of 
member would have to be known. Deriving these 
for units of interest in aircraft design represents a 
major par t of this paper. 

The matrix of Eq. (7a) is singular. This is altered 
by providing supports for the truss sufficient to prevent 
it from displacing as a rigid body when loads are applied. 
Any sufficient set of supports may be imposed; here 
we choose to put 

u\ = vi = u2 = v2 = 0 

In other words, nodes 1 and 2 are fixed, while 3 is left 
free. 

y»v-

A,E (SAME FOR ALL MEMBERS) 

L 3 
FIG. 2. Simple truss. 

X , U 

I t is now convenient to rewrite Eq. (7a) and simul-
taneously partit ion it as shown by the broken lines in 
Eq. (7c). 

Fy. 

\ F„ \ 

{ Fm j 

AE 
L~ 

1 + ^ / 2 

2 A / 2 

1 
2 ^ 2 
1 

V2 
- 1 

0 

"2\7§ 
1 

1 
2V2 

1 
2 A / 2 

0 
0 

1 
2V2 

1 
2V2 2V2 

1 
2V5 

1 
2 \ / 2 
0 
0 

1 ~l 

2V2 
1 

2\7! 

- ' - r - 7 R 1 + 

2V2 
1 

2\7§ 
0 

- 1 

-1 0 

0 0 

0 

1 
0 

0 

ih 

^3 

i wi= 0 

vi = 0 

u2 = 0 
1 j [ v2 = 0 

(7c) 

If the parti t ioned square (stiffness) matr ix is designated 
by 

A, 2x2 ^ 2 X 4 

B' 4X2 D 4X4. 

expanding Eq. (7c) leads to the following two sets of 
equations: 

{£}-•"{: 
and 

1̂ ,1 
, F„. 

= [B]' 

(8a) 

(8b) 

Eq. (8a) gives unknown node displacements in terms of 
applied forces, 

= [^4; 
i Fl3 
\F„ 

(9a) 

while Eq. (8b), together with Eq. (9a), gives unknown 
reactions in terms of applied forces, 

Fx, 
\F* 
\Fn 
,F„. 

= [BY \AY lFr, 
\Fy, 

(9b) 

In dynamic analyses of aircraft structures it is ordi-
narily sufficient to determine f-4]- 1 . This is the 
flexibility matrix. I t is interesting to note t ha t [A ] 
can be found from the complete [K] matrix by merely 
striking out columns and rows corresponding to zero 
displacements as prescribed by the support conditions, 

A complete stress analysis leading to the truss mem-
ber forces can also be carried out. I t is merely neces-
sary to know the force-deflection relations for the 
individual members, or components, of the structure. 
This is a straightforward problem for the truss and, 
therefore, will not be discussed further in this paper. 

I t is worth while to notice tha t once the stiffness 
matrix has been written, the solution follows by a 
series of routine matrix calculations. These are 
rapidly carried out on automatic digital computing 
equipment. Changes in design are taken care of by 
properly modifying the stiffness matrix. This cuts 
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FIG . 3. Wing structure breakdown. 

analysis time to a minimum, since development of the 
stiffness matrix is also a routine procedure. In fact, 
it may also be programmed for the digital computing 
machine. 

(VII) S U M M A R Y — M E T H O D OF D I R E C T S T I F F N E S S 
CALCULATION 

(1) A complex structure mus t first be replaced by an 
equivalent idealized structure consisting of basic struc-
tural par ts t h a t are connected to each other a t selected 
node points. 

(2) Stiffness matrices must be either known or de-
termined for each basic structural uni t appearing in the 
idealized structure. 

(3) While all other nodes are held fixed, a given 
node is displaced in one of the chosen coordinate direc-
tions. The forces required to do this and the reactions 
set up a t neighboring nodes are then known from the 
various individual member stiffness matrices. These 
forces and reactions determine one column in the overall 
stiffness matrix. When all components of displacement 
at all nodes have been considered in this manner, the 
complete stiffness matrix will have been developed. 
In the general case, this matrix will be of order 3n X 3n, 
where n equals the number of nodes. The stiffness 
matrix so developed will be singular. 

(4) Desired support conditions can be imposed by 
striking out columns and corresponding rows, in the 
stiffness matrix, for which zero displacements have 
been specified. This reduces the order of the stiffness 
matrix and renders it nonsingular. 

(5) For any given set of external forces a t the nodes, 
matrix calculations applied to the stiffness matrix then 
yield all components of node displacement plus the 
external reactions. 

(6) Forces in the internal members can be found by 
applying the appropriate force-deflection relations. 

The primary functions of the engineer will be to 
provide the information required in steps (1) and (2) 
above and to provide the individual member force-
deflection relations if a stress analysis is to be carried 
out. Steps (3) through (6) can be performed by non-
engineering trained personnel. Changes in design can 
be taken into account by correcting local stiffness con-
tributions to K. Node densities can be increased in 
regions of maximum complexity and importance. If 
vertical deflections only are required, as in the case of 
the aircraft wing problem, the 3n X 3n matrix for K 
can be reduced to order n X n by a sequence of matrix 
calculations. Physically, continuity of displacements 
in three directions a t each node will still be maintained. 

(VIII) S T I F F E N E D S H E L L STRUCTURES 

In carrying the above procedure over to stiffened 
shell structures, it is first necessary to perform steps 
(1) and (2) of the previous outline. 

For a wing structure the idealization will be made 
by replacing the actual s tructure by an assemblage 
of spar segments, rib segments, stiffeners, and cover 
plate elements, joined together a t selected nodes. 
Fig. 3 shows the proposed idealized structure. The 
decomposition of the structure can be carried further 
with some increase in accuracy (for example, by de-
composing spar segments into spar caps and shear 
webs), or it can be simplified by treating the structure 
as an assemblage of spars and torque boxes. The 
degree of breakdown should be consistent with the 
complexity of structural deformations required by the 
problem at hand. (In a vibration analysis the order of 
the highest mode is a determining factor.) In light 
of the proposed idealization, it is necessary tha t stiffness 
matrices be developed for the following components: 
beam segments consisting of flanges joined by thin 
webs, and plate elements of arbitrary shape. In 
addition, provision must be made for taking stiffeners 
into account and possibly for including the effect of 
sandwich type skin panels. 

In the general case, spars will be swept, nonparallel, 
and not necessarily orthogonal to ribs. I t will generally 
be convenient to transfer stiffness values for any given 
member to a fixed set of reference axes. These refer-
ence axes will be chosen as rectangular Cartesian 
(x, y, z) in order to preserve symmetry in the total 
i£-matrix. 

An outline of the determination of member stiffness 
for simple structural elements is given in the paper. 
Fur ther details are presented in Appendixes. Deriva-
tion of stiffness matrices for more complex elements 
can be accomplished in a straightforward manner. 
However, in the analysis of an actual structure, it will 
be necessary to weigh the relative advantages of em-
ploying a small number of large complex elements 
against the advantages of using a larger number of 
small elements for which simple stiffness coefficients 
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S T I F F N E S S A N D D E F L E C T I O N A N A L Y S I S 811 

may be employed. The main criterion to be observed 
in resolving this issue is t h a t the problem must be pro-
grammed so t h a t as much as possible of the da ta proc-
essing is performed automatically by the computer 
and not by human operators substituting in complex 
formulas. 

(IX) SPARS AND R I B S 

First we consider the untapered beam segment of 
uniform cross section shown in Fig. 4. I t s stiffness 
matr ix will be determined by application of beam 
theory, which is extended, however, to include shear 
web flexibility. 

Nodes, 1, 1', 2, and 2' are established as shown in 
Fig. 4. The following notation is used: 

/ = moment of inertia of beam section about 
neutral (y) axis 

tw = t = thickness of shear web 
E = modulus of elasticity of flange material 
G = modulus of rigidity of shear web material 
v = Poisson ratio 

Displacements are assumed such as to be compatible 
with elementary beam theory. In other words, 

FIG. 5. Rectangular Cartesian axes systems. 

U\ — —Ui', 
W2 = Wy 
U2 = —U2> 

(10) 

Stiffness in the ^-direction is assumed negligible. 
An outline of the derivation of the stiffness matrix 

for the above beam segment is given in Appendix (A). 
I t is shown to be of the form 

[K] 
6EI 

Lh2(l + 4n) 

"(4/3) (1 + w) 
0 

-(h/L) 

(2/3) (1 - 2w) 
0 

h/L 

0 
0 

0 
0 
0 

W\ 

h2/L2 

u2 
V2 W2 

-(h/L) (4/3) ( l + «) 
0 0 

-Qi2/L2) h/L 
0 
0 h2/L2 

(11a) 

where 3(E/G) [I/{htU)] ( l i b ) 

Contr ibut ion of shear web deformation to the above 
stiffness matr ix is indicated by values of n > 0; for a 
rigid shear web n = 0. 

As a simple example of the use of the beam stiffness 
matrix, we consider a cantilever of length L and loaded 
by force P a t the free end (nodes 1 and 1'). Pu t t ing 
n = 0 and applying Eq. (11a) gives: 

•tlJU-

FIG. 4. Beam (spar or rib) segment. 

Fxt\ 
Fj 

6EI 
L 3 

4 L 2 

Sh2 

L 
h 

u2( 
w2j 

(12) 

Eq. (12) may be inverted to yield tip displacements 
U\ and w\ in terms of applied load P (FXl = 0, FZ1 = 
P / 2 ) . The results are 

u2 = ~(PL2/2EI) (A/2), w2 PL^/ZEI 

which agree with known results. 
In an actual wing structure, spar and rib segments 

will be more or less randomly oriented with respect 
to a set of s tandard reference axes. As a result, t rans-
formation of stiffness matrices for these members to the 
s tandard set of axes will generally be necessary. The 
basis for such transformations is given below. 

Let the direction cosines of x, y, s-axes with respect 
to s tandard x, y, z-axes, Fig. 5, be 
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812 J O U R N A L O F T H E A E R O N A U T I C A L S C I E N C E S — S E P T E M B E R , 1 9 5 6 

-CQvgp 
SKIN 

(X) S T I F F E N E D P L A T E S 

FIG. 6. Stiffened cover skin element. 

Simple geometrical considerations then give the follow-
ing equation for relating forces in the x, y, z system to 
forces in the x, y, z system: 

X 

X, 
Vx 
Vx 

y 
\ 
Vy 

»v 

z 
X 
V 
Vz 

' F*A 
\Fvi\ 

' FFi 

A* X, X2 0 0 
Vx Vy Vz 0 0 
V% Vy 

0 0 
0 0 

0 0 
\ X \ y 

0 0 0 
Vx Vy Vz 
Vx Vv Vz 

<FX1 

F,_, 

or, {F) = [*]{F] 

(13a) 

(13b) 

Displacements are vectors similarly related to the 
coordinate systems as forces and hence transform under 
a rotation of axes in the same manner. Consequently, 

[*] \s\ (14) 

where 5 = 

\w2 

etc. 

F rom the above and Eq. (3) it follows that , 

[K] = [$] [K] t * ] " 1 = [*] [K] [*] ' (15) 

where [K] is the stiffness matr ix referred to the stand-
ard x, yy z set of axes. Beam segments encountered in 
the analysis of real structures will be tapered in depth, 
and flange areas will be variable; generally the segments 
will be taken short enough so t ha t the variation in 
depth may be assumed linear. Derivation of stiffness 
matrices for elements of this kind is straightforward, 
and details will not be included in the present paper. 

(1) Stiffeners 

A plan view of a typical portion of stiffened cover 
skin structure is shown in Fig. 6. Nodes are initially 
established at points 1, 2, 3, and 4. The included 
structure then consists of spar segments (1-2 and 3-4), 
rib segments (1-3 and 2-4), and stiffened plate element 
1-2-3-4. Stiffeners may be conveniently lumped with 
spar caps and, if desired, into one or more equivalent 
stiffeners located between spars. In this lat ter event 
additional nodes must be established, as a t the inter-
sections of these equivalent stiffeners with the ribs. 
The stiffness matrix for a lumped stiffener of constant 
area A, length L, and modulus E is 

[K] = ^ 
stiffener -^ 

1 
- 1 (16) 

Derivation of a similar matrix for a tapered member is 
straightforward; the area A is replaced by a suitable 
mean value. The influence of shear lag effects on 
load-deflection relations for the panel and stiffeners 
can only be included if nodes are established at inter-
mediate points on the ribs, between spars. 

(2) Plate Stiffness 

The quadrilateral plate element 1-2-3-4 of Fig. 6 
is assumed to possess in-plane stiffness only. Since 
two independent displacement components can occur 
a t each node, the order of the i^-matrix for this plate 
element will be 8 X 8. The problem of calculating K 
is not an easy one, and the solution offered here is felt 
to have potential usefulness for rinding approximate 
solutions to many two-dimensional problems in elas-
ticity. 

Before proceeding with the method developed for 
calculating K of the plate element, it is pointed out 
tha t a so-called framework analogy12 exists, which per-
mits one to replace the elastic plate with a lattice of 
elastic bars. Under certain conditions the framework 
then deforms as does the plate and hence can be used 
to calculate the plate stiffness. The determination of 
a lattice representation for a rectangular plate is rela-
tively straightforward; however, plate elements of non-
rectangular form present basic difficulties. For ex-
ample, if one a t tempts to apply the rectangular grid-
work to a nonrectangular plate, difficulties arise in 
a t tempt ing to satisfy boundary conditions. On the 
other hand, if one goes to nonrectangular lattice forms, 
difficulties arise when a t tempt ing to satisfy the stress-
strain relations in the interior of the plate. Consider-
ations such as these led to eventual abandonment of 
this approach. 

The concept finally employed for determining plate 
stiffness is based on approximating actual plate strains 
by a restricted strain representation. In other words, 
no mat te r what the actual strains in the plate may be, 
these will be approximated by a superposition of 
several simple strain states. The method for doing 
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S T I F F N E S S A N D D E F L E C T I O N A N A L Y S I S 813 

this and the accuracy of results based on such a repre-
sentation form an important portion of this paper. 

To give an initial illustration, the actual strain 
distribution in a rectangular plate element can be 
approximated by superimposing the strains t ha t 
correspond to each of the simple external load states 
shown in Fig. 7. These load states are seen to repre-
sent uniform and linearly varying stresses plus constant 
shear, along the plate edges. Later it will be seen 
tha t the number of load states must be 2n — 3, where 
n = number of nodes. 

Before commenting further on the scheme suggested 
here for analyzing plate elements, the method will be 
applied to the triangular plate of Fig. 8. The triangle 
is not only simpler to handle than the rectangle bu t 
later it will be used as the basic "building block" for 
calculating stiffness matrices for plates of arbi trary 
shape. 

We s tar t by assuming constant strains, or 

ex = a = (1 /E) (<rx - v<Ty) = du/dx | 
ey = b = (1/E) (<Ty - vax) = dv/dy , 
yxV=c= (l/G)rxv = (du/dy) + (dv/dx)) 

(17a) 

Later it will be pointed out why we are restricted in the 
choice of strain expressions. Integrat ing we find the 
displacements to be 

u = ax + Ay + B \ 
v = by + (c - A)x + C) (17b) 

where, A, B, and C are constants of integration which 
define rigid body translation and rotation of the tri-

3 (x3ly3) 

- * - x , u 
l(Xt,yi) 2 ( x 2 , y 2 ) 
FIG. 8. Node designation for triangular plate element. 

angle. Hence the triangle can displace as a rigid body 
in its own plane and undergo uniform straining accord-
ing to Eq. (17a). 

Displacements a t the nodes can be determined by 
inserting applicable node coordinates into Eq. (17b). 
In this way six equations occur which are just sufficient 
for uniquely determining the six constants of Eq. (17b). 
As a result the constants become known in terms of 
node displacements and coordinates. I t is this par t 
of the solution which determines the number of terms 
which must be chosen in the strain expressions or alter-
natively the number of applied edge stress states which 
must be used. The number is always twice the number 
of nodes minus three. Hence, for the triangle we re-
quire three terms and five for the rectangle (or quadri-
lateral) . 

To proceed with the solution, we solve directly for 
stresses in terms of node displacements uh vh u2, etc. 
If Xij = Xi — Xj and Xi = (1 — v)/2, this gives 

x2 

Al#32 

x2ys 

*—¥ ^ > — <r 
(a.) h 

-*" 

L-L-t 
(b) (c) 

VX>Z2 

x2ys 
XZ2 

x*y* 
_ Xi 

X2 

T I * 
• A * 

(d) (e) 

-J 
FIG. 7. Applied loads on edges of rectangular plate element. 

1 
X2 

V 

Xi 

Apc3 

^23*3 

or 

— 0 VXz 

Xz 

x2ys 

Xi 
X2 

V 

ys 
I o — 

y* 

^ 0 

\V\ J 

)u2[ 

U;3 / cr = [5] « 

(18a) 

(18b) 

The next step is to obtain the concentrated forces a t 
the nodes which are statically equivalent to the applied 
constant edge stresses. The procedure for doing this 
will be briefly illustrated for the case of the shear stress. 

Fig. 9(a) shows the shear stresses on the circum-
scribed rectangular element, and Fig. 9(b) shows the 
corresponding edge shear forces on the triangle. As 
before xiy yt refer to coordinates of node points. 

Forces on any edge are equally distributed between 
nodes lying on t h a t edge. For the forces as given in 
Fig. 9 (&), this leads to 

i V 3 ) = -(X2- x3) (t/2) 
Fy/V = -y3(t/2) rxy 

FJV = -Xs(t/2) rXy (19) 
^ 2

( 3 ) = +ys(t/2) rxy 

+ X2(t/2) Txy 

0 F (3) 
1 2/3 
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where the superscript refers to case 3 ( that of shear 
stress). This procedure is repeated for the two normal 
stresses. Superimposing results for these three cases 
then leads to the following system of equations for node 
forces in terms of applied edge stresses: 

Fn\ 
FyA 
Fx\ 
F ( 
F*\ 
FJ 

t 
2 

" ~ 3 ; 3 
0 
3'3 
0 
0 
0 

0 
~(x2 -

0 
— xz 

0 
x2 

X3) 
- 0 2 - tf3) 

- 3 ^ 3 

x% 
3;3 
x2 
0 

An alternative approach to the above method for 
calculating the plate stiffness matrix is to calculate the 
strain energy in the plate due to the assumed strain 
distribution and to then apply Castigliano's Theorem 
for finding the node forces. This procedure can also 
be conveniently carried out in terms of matrix oper-
ations; details will not be included here, however, since 
the result is the same as t ha t already obtained. 

Stiffness matrices for plates having four and more 
nodes have been derived and studied. The advantage 
in introducing additional nodes lies in the fact t ha t a 
more general strain expression may then be employed— 
or equivalently additional load states as illustrated by 
Fig. 7 m a y be used for the plate. As a result a choice 
between two points of view may be adopted; first, the 
simplest or triangular plate stiffness matrix may be used 
and the desired accuracy obtained by using a sufficient 
number of subelements, or second, a more general plate 
stiffness matr ix may be used with fewer subelements. 
Experience to date indicates t ha t satisfactory results 
can be obtained using the triangular plate stiffness 
matrix. 

Some additional plate stiffness matrices are given 
in Appendix (B). 

To summarize briefly the meaning and significance 
of the plate stiffness matrix, it is first pointed out t ha t 
this matr ix relates node forces to node displacements. 
As a result the plate stiffness can be immediately added 

or 

{F} = [T]{a} (20b) 

Substi tut ing Eq. (18b) into Eq. (20b), 

{F\ = [T] [S] {8} (20c) 

Comparing this last equation with Eq. (3) shows that 

[K] = [T] [S] (21) 

Carrying out the indicated matrix multiplication and 
put t ing X2 = (1 + v)/2 gives 

to spar, rib, etc., stiffnesses which are also given for 
specified nodal points. However, the plate node 
forces are statically equivalent to certain plate edge 
stresses. Furthermore, these edge stresses will tend to 
approach actual edge stresses, even of a complex nature, 
if sufficient subelements are used. A result of these 
equivalent edge stresses is t h a t continuity will tend to 
be approximately maintained along common edges of 
subelements, between nodes. In other words, we are 
assuming t ha t a plate under complex strains will deform 
in a manner t ha t can be approximated by relatively 
simple strains acting on subelements into which the 
larger plate has been divided. The accuracy of this 
representation should increase as the number of sub-
elements increases. 

(3) Quadrilateral Plates 
In the analysis of wings and tail surfaces it is generally 

convenient to employ a subdivision of cover plates 
such tha t most elements are of quadrilateral shape. 
The stiffness matrix for such elements can then be de-
rived in one of two ways: (a) the previous solution 
demonstrated for the triangle can be extended to in-
clude the quadrilateral and (b) the quadrilateral can 
be subdivided into triangles and its stiffness matrix 
determined by superposition of the stiffnesses of the 
individual triangles. In this section the lat ter pro-
cedure will be adopted. 

IK] 
Plate 

(triangle) 

Et 
2 ( 1 - v2) 

v 3 X1X232 

x2 x2ys 

X2X32 

X2 

3>3 X1X3X23 

X2 X2jt 

VX% Ai#32 

x2 x2 

Xi^23 

3^3 

•— v 

x 2 3 2 hys 
x2ys x2 

PX32 X1X3 

x2 x2 

X3X2Z X1T3 

x2ys x2 

- Xi 

*23 

3>3 

3^3 X1X32 

x2 x2yz 

X2x3 

X2 

Xi*3 

y* 

V 

^ 3 2 Xiy3 

X23>3 X2 

X! 

x% 

3;3 

XiX2 

3>3 

0 X2 

y* 

(22) 
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S T I F F N E S S A N D D E F L E C T I O N A N A L Y S I S 815 

Two simple subdivisions of the quadrilateral into 
triangles are shown in Figs. 10(a) and 10(b). These 
lead to different stiffness matrices for the quadrilateral. 
A unique result is obtained by using the subelements 
shown in Fig. 10(c). The interior node will be located 
a t the centroid, although any other choice could be used. 

For the general quadrilateral plate it has proved to be 
preferable to program the calculation of the stiffness 
matrix for high-speed computing equipment. In the 
case of the rectangle, however, an explicit derivation 
can be readily carried out. The necessary calculations, 
included below, are given here, since the end result is 
useful and since these calculations serve to illustrate a 
step of some importance in carrying out the analysis 
of a more complete structure—for example, a wing or 
tail surface. 

T h e rectangle and its four triangular subelements, 
with interior node number 5 a t the centroid, is shown 
in Fig. 11. Stiffness matrices for the triangles can be 
calculated from Eq. (22), or more conveniently from 
Eq. (B-3) of Appendix (B). In determining K of the 
rectangle, superposition in the following form is used: 

T&,«ht \ T*y ^ 

XM(X2-X5) + 

xy*zT 

(<0 ( b ) 

FIG. 9. Shear loading on triangular plate element. 

(Q) (*0 ( c ) 
FIG. 10. Decomposition of quadrilateral plate into triangular 

subelements. 

K = Kj + Kn + Kul + Klv 
rectangle 

Since five nodes have been established, K for the rec-
tangle will initially be of order 10 X 10. This will 
later be reduced to order 8 X 8 to give a result con-
sistent with the choice of four external nodes; only a t 
these external nodes is contact implied with adjoining 
structure. The immediate point is, however, tha t K 
for each triangle must be increased to order 10 X 10 
before superposition is carried out. This is accom-
plished in the usual way—that is, by introducing appro-
priate rows and columns of zero elements. 

In order to simplify the expressions for elements 
appearing in the stiffness matrices the derivation of K 
for the rectangle will be restricted to v = 1/3. 

On superimposing stiffnesses for the component tri-
angles of Fig. 11 it becomes possible to express Eq. (3) 
in the form 

FX: 
FX1 
Fr3 
FXi 
FVi 
F 
F 
1 Vs FVi 

FXi 
1 Vh J 

^•8X8 

_Bf2XS 

B%X2 

C2X2. 

f U\ 

U2 

u3 
U4 

Vi 

V2 

V3 
V4 

u$ 
, v$ 

(23) 

4(x4,y<i) 3(X3,b5) 

i ® *- X , u 
Kx^vii) 2(x2,y^ 

FIG. 11. Triangular subelements for rectangular plate. 

<rx( UNIFORM) 

ty,^ 

Since forces are to be applied to the rectangle by stresses 
equivalent to forces acting a t nodes 1, 2, 3, and 4, the 
condition 

F*. = Fn = 0 

can be applied to Eq. (23). Doing this results in the 
two sets of equations writ ten below : 

t =0.050 IN. 
E = I0.5XI06PSI. 
i) = 1/3 

TOTAL LOAD = 2 LBS. 
F I G . 12. Clamped rectangular plate subjected to uniform tensile 

loading. 
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I P*. 
\F;3 

Fn 
Fy,. 
Fn 

FVl 

t = [A] 

I} - ™ 

til 

uz 

U4 

Vi 

V2 

Vs 
Vi 

u2 

Uz 
Ui 

Vi 

V2 

vs 

[ Vi j 

Solving Eq. (24b) for displacements a t node 5 and sub-
sti tuting the result into Eq. (24a), 

+ PI {;•} (24a) \FJ ([A]- \B] [C\-*[BY) ih (25) 

+ <« {:} 

where i = 1, 2, 3, 4. Comparing Eq. (25) with Eq. (3) 
gives 

[K] = [A]- [B] [C]~i[BY (26) 
rec tang le 

Carrying out the calculations required by Eq. (26) re-
sults in the following rectangular plate stiffness matr ix: 

(24b) 
[K] - ^ 

rec tangle l o 

Kii | K12 

\_Kn I K22. 

where, when m = (x2 — Xi)/(y* — yi), 

(27a) 

Ml 112 lh Ui 

Ku = 

3m + 
m 

K22 

9 
m — — 

m 3 
— m — — 

m 
3 

- 3 m + -m 

fli 

3 
9m + — 

m 
3 

3m — — m 
1 

— 3m — — 
m 
1 

— 9m + — 
m 

9 
3m H 

m 0 

- 3 m + -
m 

3 
— m 

m 
V2 

3 
9m + — m 

1 
— 9m + — 

m 
1 

— 3m — — 
m 

9 
3m H— 

m 
9 

m — — m 

^3 

3 
9m + — 

m 
3 

3m — — 
m 

9 
3m + -m 

w4 

9m + 

+ 3m + 
m 

m 

+ 
1 

. 3 

m + — 
m 

U\ U2 11% Ui 

- 1 

1 - 1 

- 1 1 - 1 

1 - 1 1 - 1 

V\ V2 Vz V4 

- 1 

1 - 1 

- 1 1 + 1 

1 - 1 1 - 1 

(27b) 

(27c) 

Kl2 = 

Vi 

1 
0 

- 1 
0 

K21 

V2 Vs 

- 1 
0 1 
1 0 

= K\2 

Vi 

- 1 

(27d) 

(27e) 

If the order of z/-terms in the above equations are re-
arranged from V\, v2, v%, Vi to vh v*, Vz, v2, it will be dis-
covered tha t K22 equals Kn provided we replace m in 
Kn everywhere by 1/m. The corresponding form for 
K12 may be writ ten without difficulty. I t is again 
pointed out tha t the above plate stiffness matrix is 
based on v — 1/3. 

The process of eliminating displacements a t node 5 
is similar to the situation tha t arises when only w dis-

placements are to be retained in a wing analysis. In 
this latter problem it then becomes necessary to elimi-
nate all u and v components of displacement. The 
procedure for doing this is the same as tha t used in 
eliminating u-0 and v& from the above problem of the 
rectangular plate. 

(4) Example 

I t is of interest to carry out calculations on a simple 
example and compare results obtained by applying the 
plate stiffness matrix with values t ha t can be regarded 
as correct. 

For this purpose the plate of Fig. 12 is analyzed using 
several different methods. Deflections a t several points 
due to the indicated loading will be calculated. Since 
an exact solution is not available, correct displacements 
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Solution 
No. 

1 
2 
3 
4 
5 
6 

Method 
Relaxation 

Simple theory 
Plate i^-matrix 
Plate i£-matrix 
Plate ^-matr ix 
Plate i^-matrix 

Fig. 
13 
13 
13a 
13b 
13c 
13d 

Hi 

2.703 
2.721 
2.595 
2.692 
2.718 
2.714 

TABLE 2 

U-i 

2.607 
2.721 

2.578 

w3 

2.703 
2.721 
2.595 
2.692 
2.697 
2.712 

UA Uf> 

Multiply all values by 10 
1.391 1.248 
1.360 1.360 

1.355 1.199 

V\ 
- 6 

0.686 
0.635 
0.740 
0.680 
0.686 
0.688 

Vz 

- 0 . 6 8 5 
- 0 . 6 3 5 
- 0 . 7 4 0 
- 0 . 6 8 0 
- 0 . 7 1 7 
- 0 . 6 9 1 

^4 

0.562 

0.568 

will be taken as those calculated by applying the re-
laxation method to the fundamental equations govern-
ing this problem. Although details of these calcula-
tions are not presented, results are listed in Table 2. 

The problem is interesting for a t least two reasons. 
First, the accuracy obtainable using various numbers 
of subelements can be observed, and second, the effect 
of using random orientation of subelements—with 
respect to the plate edges—can be observed. 

Results of all calculations are summarized in Table 2. 
Node locations and subelements are illustrated in Fig. 
13. 

In Table 2 the solution based on simple theory was 
obtained from u = PL/' AE and ey = — v ex. I t is 
observed t ha t on this basis both u\ and v\ agree quite 
well with the relaxation solution. 

The crudest plate matrix solution is listed in Table 2 
as Solution No. 3. I t was obtained by considering the 
plate as a single element whose stiffness is given by 
Eq. (27). The results for u\ and v\ are seen to be 
reasonably good. Solution No. 4 considers the plate 
as consisting of four rectangular subelements as shown 
in Fig. 13(b). Again the stiffness matrix was obtained 
by using Eq. (27), this time for each subelement. 
Agreement with relaxation results is seen to be satis-
factory, particularly in regard to u\. Also the dif-
ferences between u\ and u2 are approximated accu-
rately by this solution. I t is to be remembered that 
the actual strain distribution in the plate is complex 
in nature. 

Solutions 5 and 6 in Table 2 were carried out in a 
ma t t e r of minutes on a high-speed digital computer. 

Each subquadrilateral was considered as consisting of 
four triangles in a manner analogous to the t rea tment 
described previously for the rectangle of Fig. 11. In 
Solution No. 5 we note t h a t u\ and us are not equal, a 
consequence of the random nature of orientation of the 
subelements. By increasing the number of random 
subelements as in Solution No. 6, this lack of symmetry 
in results is virtually removed. Comparison with 
relaxation values is seen to be very good for both Solu-
tions 5 and 6. 

A more comprehensive example is given in the next 
section of the paper. 

(XI) ANALYSIS OF B O X B E A M 

As a final example, the box beam of Fig. 14 will be 
analyzed for deflections, using the stiffness matrices 
previously derived. 

The box is uniform in section, unswept, and contains 
a rib a t the unsupported end. The following dimen-
sions apply: a/b = T, 2b/h = 10, tc = tw = t = 0.05 
in., AF = bt/2, a = 400 in. 

As the simplest possible breakdown, we consider the 
box to consist of two spars, one rib, and two cover 
skins. The nodes are then as shown in Fig. 15. Forces 
may be applied a t the nodes a t the free end. Two 
cases will be investigated: (1) up loads at each spar 
(bending) and (2) up load on one spar and a down 
load a t the other spar (twisting). 

The spar matrix is given by Eq. (11a). Calculation 
shows it to be 

IK] 
spar 

Et 
~2 

U\ or u2 

1.13903 
0.05227 
0.50303 

-0.05227 

w\ or w2 

0.00333 
0.05227 

-0.00333 

Us or Ui 

1.13903 
-0.05227 

ws or w± 

0.00333„ 

(28) 

Cover plate stiffness is given by Eq. (27a) and for this case becomes 

[K] = 
Et 

cover 
plate 

U\ 

0.90878 
0.37500 
0.19329 
0 
0.31916 
0 
0.39634 
0.37500 

Vl 

1.39778 
0 

-1.15928 
0 
0.37109 
0.37500 

-0.60959 

u2 

0.90879 
0.37500 

-0.39634 
-0.37500 
-0.31916 

0 

v2 

1.39778 
-0.37500 
-0.60959 

0 
0.37109 

us 

0.90879 
0.37500 

-0.19329 
0 

1 
0 

- 1 

Vs 

39778 

- 1 . 1 5 9 2 8 

Vi 

0.90879 
-0.37500 1.39778 

(29) 
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818 J O U R N A L O F T H E A E R O N A U T I C A L S C I E N C E S — S E P T E M B E R , 1 9 5 6 

The rib has not been defined as yet. Two possible rib configurations will be analyzed in this paper. In the first 
case, the rib is considered as a beam identical in section to the spar. This leads to the following stiffness matrix 
for the r ib : 

[K] 
r ib 

= Et 
2 

Vi 

0.13086 
-0.00976 

0.06413 
0.00976 

Wi V2 

0.00098 
-0.00976 0.13086 
-0.00098 0.00976 

w2 

0.00098 

(30a) 

In the second case, the rib is t reated as a flat plate. The general stiffness matrix which has been derived for a 
rectangular flat plate is of order 8 X 8 . However, in the present instance, the following conditions must be intro-
duced to insure compatibili ty with the other portions of the s t ructure (see Fig. 15 for subscript locations): 

W\ = Wy 

w2 = w2> 
and V\ = 

V2 = 

-Vi 

-V2 

and, likewise, for the forces 

F = F , 
1 z\ -1 zr 

F = — F 
and 

FZ9> F = 
1 VI 

-Fy, 

Treat ing the rib as a flat plate (t = 0.050 in.) and apply-
ing the above conditions leads to the following rib 
stiffness matrix : 

Et 

Vi 

5.65088 
-0.37500 

1.84181 
0.37500 

Wi 

0.03754 
-0.37500 
-0.03754 

v2 w2 

5.65088 
0.37500 0.03754_ 

(30b) 

[K] = 

I t is anticipated tha t the choice of rib will have little 
effect on deflections due to the bending-type loading 
and a more pronounced effect on the twisting-type 
loading. 

Using the same technique as described for the simple 
truss, it is now a straightforward mat te r to form the 
stiffness matrix for the complete box. Advantage can 
be taken of the following: (1) structural symmetry 
t h a t exists for the box with respect to the x^-midplane 
and (2) restriction in this problem to loads t ha t act 
normal to this plane. Under these conditions each 
pair of upper and lower surface nodes will experience, 
in addition to equal vertical deflections, equal bu t 
opposite displacements with respect to the x^-midplane. 
In other words, the box will deflect in the sense of a 
conventional beam. The spar and rib stiffness ma-
trices already provide for such elastic behavior. The 
plate stiffness matrices make no distinction, other than 
in the sign of the node forces, for a reversal in direction 
of node displacement. Consequently, if the normal 
loading is carried equally by upper and lower nodes, 
only the upper set will need be considered when forming 
the box stiffness matrix. Due to the division of load-
ing, correct deflections will result. In this manner 
the stiffness matrix for the box is found to be [Eq. 
(30a) used for rib stiffness] 

m - f 

U\ 

2.04782 
-0.37500 
-0.05227 
-0.19329 

0 
0 

Vl 

1.52864 
-0.00976 

0 
-1.09515 

0.00976 

Wi 

0.00430 
0 

-0.00976 
-0.00098 

u2 

2.04782 
0.37500 

-0.05227 

V2 

1.52864 
0.00976 

w2 

0.00430 

(31) 

The inverse of this matrix is the flexibility matrix. 

Fx, 

[K]-1 = [C] = 
box 

F,„ Fa 

2 
Et 

0.81646 
0.22705 

-10.47344 
0.20384 
0.08123 

-5.55027 

1.66224 
2.72965 

-0.08123 
1.26026 

-5.01982 

409.39998 
-5.55027 

5.01982 
142.67751 

0.81646 
-0.22705 

-10.47344 
1.66224 

-2.72965 409.39998, 

(32) 

From the flexibility matrix, deflections due to applied loads can be found a t once. For the two cases of applied 
loadings we find the following (rib treated as beam). 
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S T I F F N E S S A N D D E F L E C T I O N A N A L Y S I S 819 

Case 1 (bending) : 
Forces of 1 lb. acting upward a t each spar (nodes 1 and 2). 

wx = 11 ,041 .55 /E ui = - 3 2 0 . 4 7 / E vi = - 4 5 . 8 0 / E 
w2 = l l , 0 4 1 . 5 5 / £ u2 = - 3 2 0 . 4 7 / E v2 = 4 5 . 8 0 / E 

Case 2 (twisting): 
Force of 1 lb. upward a t node 1 and 1 lb. downward a t node 2. 

wx = 5 , 3 3 4 . 4 5 / E «i = - 9 8 . 4 6 / E vx = 154 .99 /E 
w2 = - 5 , 3 3 4 . 4 5 / E w2 = 9 8 . 4 6 / E z;2 = 154 .99 /E 

Similar results may be calculated for the case when 
the rib is assumed as a plate. Complete details are 
not given. In bending we get w\ = 10,888.12/E, 
Ul = - 3 1 0 . 5 6 / E , and vx = - 1 8 . 2 5 / E . Twisting 
results are wi = 3615.72/E, ux = - 25.84/E, and i/i = 
349.52/E. 

I t is now advisable to select additional nodes and 
recalculate the previous deflection data . When added 
nodes have little effect on results, the process can be 
considered to have converged. Whether convergence 
be to the correct values requires additional information. 
These questions are now examined. 

First, solutions are found for the node pat terns 
shown in Fig. 16. Vertical deflections a t node 1 for 
bending-type loading are as follows: 

Fig. 16(a) wi = 8558 .0 /E 

Fig. 16(b) W! = 8591 .2 /E 

Fig. 16(c) wx = 8548.4/E 

I t is seen t h a t the change in w± in going from the node 
pat tern of Fig. 16(b) to 16(c) is about 1/2 per cent. 
Consequently convergence can be assumed to have 
been at ta ined with the solution found from Fig. 16(b). 

Obviously the first solution, based on Fig. 15, is in 
considerable error. This is due to the poor tie between 
spars and cover plate. Fig. 16(a) introduces an addi-
tional tie between these two components. The de-
creased value of W\ for this case therefore reflects the 
added stiffness due to including the two nodes at the 
mid-span location. 

An unexpected result is the close agreement between 
the solutions based on Figs. 16(a) and 16(b). In fact 
it would seem reasonable to expect Fig. 16(b) to lead 
to a smaller value for W\ than tha t given by Fig. 16(a). 
Careful scrutiny, however, indicates tha t these results 
are quite reasonable. Whereas the node pat tern of 
Fig. 16(b) accounts for shear lag in the cover plate, this 
is not the case with Fig. 16(a). As a result, the added 
stiffness in Fig. 16(b), due to the additional nodes 
connecting spars and cover skins, is offset by the 
added flexibility introduced by shear lag in cover skins. 
The results indicate these factors to be nearly equal; 
hence the reason for the nearly correct values given by 
Fig. 16(a). 

Fig. 16(c) allows for shear lag and, a t the same time, 
provides for adequate tie between spars and cover 

plates. I t can therefore be felt t h a t this node pat tern 
will give final results which represent convergence of 
the method. As mentioned previously, this is substan-
t iated by comparison with values obtained from Fig. 
16(b). 

There remains the question as to what is the correct 
value for w\ for this problem. Elementary beam 
theory gives w± = 6,900/E, and, if extended to include 
shear distortion of spar webs, gives W\ = 7,74:0/E. 
Using Reissner's shear lag theory,13 the tip deflection is 
obtained as W\ = 7,900/E. Finally if Reissner's shear 
lag theory is modified to include spar shear web de-
formation, the result is W\ = 8,740/1?. This is the 
most accurate theory available. I t agrees to approxi-
mately 2 per cent with the numerical solution based on 
stiffness matrices. 

The pronounced shear lag effect in this problem and 
its marked influence on the vertical t ip deflection are 
significant. I t is precisely this effect t ha t produces a 
very complex stress distribution in the cover skins. 
Nevertheless the plate stiffness matrix developed in 
Eq. (27a) and based on triangular subelements repre-
sents this stress pat tern with gratifying effectiveness. 

The solution for the node pat tern of Fig. 16(c) was 
obtained in a few minutes by utilizing a program for a 
high-speed digital computer t ha t computed individual 
plate and spar stiffnesses and then combined these 
into the stiffness matrix for the complete box. 

(XII) REDUCTION IN O R D E R OF S T I F F N E SS M A T R I X 

(1) Eliminating Components of Node Displacement 

In an actual problem—as a wing analysis—the num-
ber of nodes to be used can become quite large. If, for 
purposes of discussion, 50 nodes are assumed, the stiff-
ness matrix becomes of order 150 X 150. By elimi-
nating u and v components of displacement a t each node, 
the stiffness matrix can be reduced to order 50 X 50. 
However, this reduction process [see t rea tment of Eq. 
(23), for example] can require the calculation of the 
inverse of a 100 X 100 matrix. Such calculations are 
best avoided at present. 

The problem tha t arises in eliminating the u and v 
components can be handled satisfactorily in any one 
of several ways. First, the calculation of the inverse 
of a large-order matrix can be avoided by eliminating a 
single component a t a time. This is a practical ex-
pedient when automatic digital computing equipment 
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820 J O U R N A L O F T H E A E R O N A U T I C A L S C I E N C E S — S E P T E M B E R , 1 9 5 6 

(a) (b) 

T ^ ? — P ~ ~ ? T fop f ? f y1 

^>4 1—&-i-A 
k75^ 

(c ) (d) 
FIG. 13. Nodes and supports for clamped rectangular plate. 

is available. Second, in some cases it may be feasible 
to eliminate "blocks" of u and v components a t a time, 
thereby reducing the order of matrices to be inverted 
a t any one t ime to a reasonable size (say 20 X 20). 
Third, the analysis can be carried out for sections of 
the structure, taken one by one. For each section, as 
a spanwise portion of the wing, the complete stiffness 
matrix can be determined. Elimination of u and v 
components can then be carried out a t any selected 
nodes, except those common to two distinct sections 
of the structure. Each section can be treated in this 
manner. By properly adding the individual section 
stiffness matrices, the total stiffness matrix can be ob-
tained. Finally u and v displacements a t nodes where 
the sections join together can be eliminated. The stiff-
ness matrix t ha t remains will apply to w deflections 
only. 

From a practical standpoint, the method just de-
scribed has several worth-while features. For ex-
ample all components of displacement a t a given node 
may be eliminated. This can be useful when addi-
tional nodes are felt to be necessary in order to account 
properly for regions of maximum structural com-
plexity. Even though eventually eliminated, these 
nodes will have contributed to the elements retained 
in the stiffness matrix. 

(2) Inversion of Stiffness Matrix 

Ordinarily, only the first few low-order vibration 
nodes and frequencies are required for the purpose of 
carrying out subsequent dynamic analyses. Using 
the stiffness matrix directly in the matrix iteration 

method leads to the highest frequency and correspond-
ing mode. If the order of the stiffness matrix is high 
(say, 50 X 50), i t becomes impractical to eliminate 
successively the higher modes and so eventually obtain 
the lowest modes. 

Inversion of the stiffness matrix leads to the flexi-
bility matrix. This matrix used in the matr ix iteration 
procedure yields results for the lowest mode. There-
fore, it is ordinarily preferable to know the flexibility 
matrix. 

If the stiffness matrix is of high order (say, 50 X 
50), inverting it becomes a major problem in itself. 
This can be overcome to some extent by employing the 
capabilities of present-day digital computing equip-
ment. However, in many instances an alternative 
procedure may either be useful or necessary. Conse-
quently, a possible approach to overcoming this diffi-
culty will be outlined here. 

The proposed method consists of converting the 
original stiffness matr ix K into a lower order stiffness 
matrix K*. This is accomplished by introducing a set 
of generalized coordinates which are related to the 
original displacements (on which K is based) through a 
set of appropriately chosen functions. The accuracy 
inherent in K will have a direct influence on X*. 

Suppose K is known for the cantilever beam of Fig. 
17. The order of K is 10 X 10. Now assume a set of 
polynomials of the form 

SPAR WEB=t^=0.05,r 

AF= 6.365 SQ.IN. 

F I G . 14. Cantilevered box beam. 

FIG. 15. Simplest node pattern for box beam. 
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S T I F F N E S S A N D D E F L E C T I O N A N A L Y S I S 821 

Piipc) = aix2 + bix* + CixA 

P2{x) = a2x2 + b2xs + c2x5 j 

P5(x) = a5x2 + &5^3 + c5:v8 

(33) 

Each of these will be made to satisfy the boundary 
conditions of the cantilever which are, 

P,(0) = P / ( 0 ) = P/(L) = P/"(L} = 0 

Applying these conditions results in 

Piix) = 6(x /L) 2 - 4 (x /L) 3 + (.v/Z,)4] 
P2(*) = 20(x/L) 2 - 10(x/L)3 + (s/Z,)3! 

(34) 

Ph{x) = 140(*/Z,)2 - 56(*/L)8 + Cr/L)8] 

We now introduce generalized coordinates gt which, are 
related to the displacements y{ through the above poly-
nomials. This relationship is established through the 
equations 

yi 
J2 

(35) 

yio 

Pl(Xi) P2(Xi) . 
Plfe) P2(x2) . 

. p B (* l ) 1 

. p6(*2) 

(gl 

Wo 

LPi(.r10) P2(xw) . . Ph(xw) 

(36) 

I t is seen tha t the ten displacements yh y2, . . . , yw are 
to be replaced by the five coordinates qh q-2, • . , g^ 

The free vibration problem for the cantilever can be 
set up in terms of kinetic and potential energies. In 
terms of original displacements yi, y2f . . . , >'io, these 
energies are, respectively, 

r = (1/2) {y}> [M]{y] and 
7 = (1/2) {y} ' [K]{y] 

where [M] is the inertia (mass) matrix and [K] the 
original 1 0 X 1 0 stiffness matrix. 

Writ ing Eq. (35) as 

M - [P] {g} 
and substi tuting into Eqs. (36), 

T= (1/2) {q}' [P]' [M] [P]{q\ 

V= (1/2) {g}' [P)'[K] [P]{g\ 

from which we define 

[K*] = [py [K] [p] \ 
[M*\ = [py [M] [P]j (37) 

If K is of order of 10 X 10 and P of order 10 X 5, K* 
will be of order 5 X 5 . The vibration analysis is now 
performed using K* and If*. By inverting K* the 
lower modes can be calculated directly. Or alterna-
tively, K* can be used and all modes and frequencies 

-4 

d- - A 
( b ) 

Additional node patterns for box beam. 

y\ 
i 

9 10 
i i i l i I I i 

I 2 3 4 5 6 7 8 
10 EQUAL PARTS 

@L/fo 
FIG. 17. Station selections on cantilever beam. 

determined, starting with the highest. This is feasible 
if K* is of sufficiently low order (say, 10 X 10). 

This process can be modified in several respects, and 
the purpose here is not to give an exhaustive t rea tment 
bu t rather to simply point out a possible approach to 
the problem. Preliminary calculations indicate t ha t 
the idea may possess practical value. Extension to a 
two-dimensional grid can be made by generalizing the 
procedure suggested above. 

A P P E N D I X (A) 

DERIVATION OF SPAR S T I F F N E S S M A T R I X 

The structure and notation are described in Section 
(IX) and Fig. 4. 

Flanges are assumed to carry axial stresses, while the 
web carries shear stresses. Cover plate material is not 
included as par t of spar flanges. Derivation below is 
based on conventional beam theory. 

Casel 

U\ = —U\ ?£ 0; all other components of node dis-
placement for the beam = 0. 

The deflected beam and necessary forces and reac-
tions are shown in Fig. A- l . Due to forces Fx a t the 
left end, the beam deflects upward. The Fz forces 
cause a downward deflection. Beam theory, including 
effects of uniformly distributed shear in web, gives 

w — 
FXihL2 2FZxU 

2EI 3EI 
(1 + n) 

r zi^J-' . rzi*L/ 

(A-l) 

(A-2) 
(EI) (EI) 

where w and 6 are deflection and slope a t the left end of 
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822 J O U R N A L O F T H E A E R O N A U T I C A L S C I E N C E S — S E P T E M B E R , 1 9 5 6 

t i^ t 

FIG. A-l. First beam displacement required in developing 
beam stiffness matrix. 

F*. —* 

> l r > z 

12 

€> * - F 

FIG. A-2. Second beam displacement required in developing 
beam stiffness matrix. 

the beam, respectively, and n is given by Eq. ( l i b ) . 
Due to boundary conditions, w = 0; also, from the 
geometry of the deflected beam, 6 = 2ui/h. Using 
these relations in Eqs. (A-l) and (A-2) and solving for 
forces gives 

8 E / 1 + n 6EI 4 
F* = ¥L YTTn Ul = LhKl + 4.) 3 (1 + U) Ul 

hL2 1 + An 
6EI 

U\ = • 
Lh\\ + An) L 

(A-3) 

ui (A-4) 

Forces at node 2 follow from equilibrium considerations. 
They are 

Fx, = 
4 £ J 1 - 2n 6EI 
h2L 1 + An Ui = 

Z,fc2(l + An) 3 
(1 — 2n) Ui 

* 20 - * Z i 

(A-5) 

(A-6) 

The above forces represent the first column of the re-
quired stiffness matrix. The other columns are found 

in a similar manner. When W\ = W\> ^ 0, while all 
other nodes are held fixed, the forces of Fig. A-2 apply, 

Forces due to displacements imposed on the right-
hand end of the beam may be writ ten from the above 
results by analogy. The final spar stiffness matrix 
is given as Eq. (11a). 

A P P E N D I X (B) 

P L A T E STIFFNES S M A T R I C E S 

Several plate stiffness matrices are given here with-
out derivation. 

(1) Triangle—Arbitrary Node Locations 

x 3 , y -

* 2 . y « 

* ! ' * ! 

-*- x 
FIG. B-l. Triangular plate element with arbitrary node locations. 

The stiffness matrix will be defined with respect to 
the equation 

\Vi 

)u2{ 

\v2 \ 

\fl3 

\FV. = [K] (B-l) 

Again adopting the notation 

xa = x ( - Xj, Xj = (1 - v)/2, X8 = (1 + v)/2 
(B-2) 

we get 

Et 

where 

XlX23
2 + 3/232 

X2^323;23 ^232 + Xl3;232 

A1X23X3I + j2ZjZ\ XiXi3^23 + VX^JZl A l ^ l * + 3>31* 

\lXz2yZl + ^13^23 ^23^31 + X3y 23^31 X2Xi3^31 ^31 2 + X 0 3 1 2 

X1X12X23 + 3^12^23 Xi^2l3;23 + VXS2yi2 Al#12#31 + J^Zl A l ^ l ^ l + VX^Jn X i# i 2
2 + 3/122 

X1X323/12 + ^21^23 ^12^23 + X3^l2>'23 Al# 133>12 + VXtlJzi #12^31 + A l ^ ^ l X2X21^12 ^122 + Xi^ l 2
2 J 

(B-3) 

1/(1 2) 
X-nys + X13J2 + X323'l 
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2 " b 3 
FIG. B-2. Node locations for rectangular plate element. 

The stiffness matrix given below for the rectangle is 
based on the load states shown in Fig. 7. As a result 
this matr ix is more general than t ha t given in Eq. (27) 
due to the inclusion of linear terms in the strain expres-
sions. 

Again the stiffness matrix is arranged to agree with 
the equation 

I rxi 

FXi 
F 

F 

Fxt 

[K] 

Vi 
U2 

v2 

Vs 
U± 

(Vi ) 

(B-4) 

in which [K] is given by 

[K] = 
Et 

8(1 - v2) 

where, in the above matrix 

U\ 
ax + bi 
1 + v 

ax - h 
Zv - 1 

— ai — ci 
- 1 - v 

c\ ~ a\ 
1 - 3 ^ 

IllcLLI iA , 

a± = m ( l 
a2 = (1 -

Vi 

a2 + b2 
1 - 3v 

c2 — a2 

- 1 - v 
— a2 — c2 

3v - 1 
a2 — b2 

~ v), 
v)/m, 

u2 

ai + bi 
- 1 - v 

c\ - ai 
SP - 1 

— CLi — CX 

1 + V ~ 

h = ( 2 / 3 m ) (4 
b2 = ( 2 m / 3 ) (4 

m = l/h 

v2 

a2 + b2 
1 - 3v 

a2 — b2 

1 + V 
a2 — c2 

~ v2), 
- ^ 2 ) , 

(see F ig . 

us 

a i + h 
1 + v 

ax — bx 

3P - 1 

^3 

a2 + b2 
1 - 3>-

^2 — a2 

ex = ( 2 / 3 m ) (2 + 
c2 = ( 2 m / 3 ) (2 + 

7) 

UA 

ax + h 
- 1 - v 

v*)\ 
v2) ( 

Vi 

a2 + b2 -

(B-5) 

(B-6) 

(B-7) 

Eq. (B-5) simplifies to the following if v = 1/3: 

[X] = 96 

where 

Ux 

<P\(m) 
18 

<P*(rn) 
0 

<£>4(m) 

- 1 8 

<Pz{m) 

0 

fli 

<Pi(l/m) 

0 

^ 3 ( l / m ) 

- 1 8 

<Pi(l/m) 

0 

^2(1/W) 

*>i(w) 
ip2{m) 

<Pz(m) 
<P4(m) 

u2 

<Px(m) 

- 1 8 

<p*(m) 
0 

9?4(w) 

18 

= 9m 
= 9m 

v2 

<?i( l /m) 

0 

^ ( 1 / m ) 

18 

^ 4 ( l / m ) 

+ ( 3 5 / m ) , 
- ( 3 5 / m ) , 

= - 9 m + ( 1 9 / m ) , 
= —9m - ( 1 9 / m ) , 

uz 

<Px(m) 

18 

<p2(m) 
0 

^ ( 1 / m ) = 
<p2(l/m) = 
<Ps(l/m) = 
<Pi(l/rn) = 

v-s 

<Px(l/m) 
0 

<£>3(l/m) 

( 9 / m ) + 35m 
( 9 / m ) — 35m 
( - 9 / m ) + 19m 
( — 9 / m ) — 19m 

Ui 

<Pi(m) 
- 1 8 

Vi 

<P\{m) 

(B-

(3) Other Shapes 

Although the parallelogram and arbitrary quadri-
lateral can be t reated in a manner similar to tha t used 
for the rectangle, the individual elements in [K] tend 
to become unwieldy. For tha t reason use of automatic 
digital computing equipment is considered to offer the 
practical means for obtaining stiffnesses of such plates. 
Programs for carrying out such calculations can be de-

termined by following the basic ideas developed in this 
paper. 

REFERENCES 
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(Continued on page 854) 
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ADDENDUM* 

In the Journal of Rational Mechanics and Analysis, Vol. 5, 
pp. 1-128, 1956, Ikenberry and Truesdell present a rigorous 
mathematical anatysis of the erroneous behavior of the Burnett 
expansion method and the Grad "13-moment" approximation. 
Truesdell shows, by comparison with the exact solution for a 
simple shearing flow defined by ux/y = constant, that the 
Maxwellian iteration process only converges for ixux/py < 
V 2 / 3 . Also, by comparison with a mathematical model simu-
lating the exact equations of motion for a Maxwellian molecule, 
Truesdell indicates that in general no universal formulas, valid 
for all initial or boundary conditions, can result beyond the 
Navier-Stokes order of approximation and that in a specific 
case the Navier-Stokes equations more closely approximate the 
true asymptotic solution than does any finite sum of higher 
order approximations. 
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