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Euler-Lagrange Equations Using Delta Operator

Consider a Function y(x) and a Neighborhood function ỹ(x) to the function
y(x)

ỹ(x) = y(x) + δy(x)

δ ⇒ Delta Operator or Variation Operator
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Euler-Lagrange Equations Using Delta Operator

δy(x) = An infinitesimal, slowly varying, change to the function at a given
x . It vanishes at those points where y(x) is specified.

δy(x) is not same as
dy

dx
, it is δ(

dy

dx
) =

d

dx
(δy). It has the following

properties:

• δ(F ± G ) = δF ± δG

• δ(FG ) = F δG + GδF

• δ
(F
G

)
=

GδF − F δG

G 2
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Euler-Lagrange Equations Using Delta Operator

Consider a Functional

I =
∫ x2

x1
F (x , y , y ′)dx

Here y = y(x) (assumed to be continuous in x1 < x < x2), and y ′ indicates
derivative of y with respect to x ; and F , called the Lagrange function or
Lagrangian, is a function of x , y and y ′.

Objective: Determine y(x) that will make I to be stationary.

δy(x) vanishes at the boundary where the function y(x) (essential boundary
condition) is specified.
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Euler-Lagrange Equations (contd...)

Variation of I

δI =
∫ x2

x1

(
∂F

∂y
δy +

∂F

∂y ′
δy ′
)
dx + higher order terms

= δ(1)I + higher order terms

For I to have a stationary value, the first term on the right hand side, called
the first variation of I , represented as δ(1) must vanish (i .e δ(1) = 0). This
yields: ∫ x2

x1

(
∂F

∂y
δy +

∂F

∂y ′
δy ′
)
dx = 0
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Euler-Lagrange Equations (contd...)

Integrating the second term by parts:

∫ x2

x1

∂F

∂y ′
δy ′(x)dx =

∂F

∂y ′
δy(x)

∣∣∣∣x2
x1

−
∫ x2

x1

d

dx

(
∂F

∂y ′

)
δy(x)dx

Using the following Property of delta operator

δ

(
dy

dx

)
=

d
(
δy(x)

)
dx

Stationary condition for I δ(1) = 0

∂F

∂y ′
δy(x)

∣∣∣∣x2
x1

+
∫ x2

x1

[
∂F

∂y
− d

dx

(
∂F

∂y ′

)]
δy(x)dx = 0
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Euler-Lagrange Equations (contd...)

δy(x1) and δy(x2) are arbitrary and independent

Above equation must be true for all values of δy(x1) and δy(x2) including
when both are zero. This means the second term must be zero by itself.

∂F

∂y ′
δy(x)

∣∣∣∣x2
x1

= 0

∫ x2

x1

[
∂F

∂y
− d

dx

(
∂F

∂y ′

)]
δy(x)dx = 0

Since δy(x) is an arbitrary and a slowly varying function of x

∂F

∂y
− d

dx

(
∂F

∂y ′

)
= 0
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Euler-Lagrange Equations (contd...)

Euler-Lagrange equation for the given Lagrangian, F.

δy(x1) and δy(x2) are independent from each other and are completely
arbitrary

∂F

∂y ′
δy(x)

∣∣∣∣
x1

= 0

∂F

∂y ′
δy(x)

∣∣∣∣
x2

= 0

Either δy(x1) = 0 (y(x1) specified), or
∂F

∂y ′
= 0 at x1,

and either δy(x2) = 0 (y(x2) specified), or
∂F

∂y ′
= 0 at x2.
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Euler-Lagrange Equations (contd...)

At a given end,
∂F

∂y ′
may be specified. For such cases the functional I will

have additional term G (y1) or (G (y2)).

For some cases, When y(x) is specified at an end, we term it to be an
Essential Boundary Condition

When
∂F

∂y ′
= 0, it is called Natural Boundary Condition
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Example

Total potential energy (Π)

Π = U + V

U = Strain Energy of the bar

=
1

2

∫ L

0
[EA(x)]

(
du

dx

)2

dx

V = Potential of the applied load

= −
∫ L

0
p(x)u(x)dx − Pu(x = L)
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Example (contd...)

Principle of minimum total potential energy

δ(1)Π = 0, δ(1)Π is the first variation of the total potential energy

δ(1)Π =
1

2

∫ L

0
[EA(x)] .2.

(
du

dx

)
δ

(
du

dx

)
dx

−
∫ L

0
p(x)δu(x)dx − Pδu(x = L)

By using integration by parts, and the fact that

δ

(
du

dx

)
=

d(δu)

dx
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Example (contd...)

The first variation of Π becomes:

δ(1)Π = EA(x)

(
du

dx

)
δu

∣∣∣∣L
0

−
∫ L

0

d

dx

[
EA(x)

(
du

dx

)]
δu(x)dx

−
∫ L

0
p(x)δu(x)dx − Pδu(x = L)

At x = 0, the displacement u is specified (an essential boundary condition).
This renders δu = 0 at x = 0.
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Example (contd...)

For Π to be stationary, [
EA(x)

(
du

dx

)
|x=L − P

]
δu|x=L

−
∫ L

0

[
d

dx
{EA(x)

(
du

dx

)
}+ p(x)

]
δu(x)dx = 0

The above equation must be satisfied for all values of δu(x = L), including
δu(x = L) = 0

Euler Lagrange Equation

d

dx

[
EA(x)

(
du

dx

)]
+ p(x) = 0

The associated boundary
condition at x = L is given as:

EA(x)

(
du

dx

)
= P

The boundary condition at x = L is a natural boundary condition.
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Lagrangian with Second Derivatives

Euler-Bernoulli Beam Strain energy contains the square of the second deriva-
tive of the transverse deflection
Euler-Lagrange equation will be a fourth-order ordinary differential equation
with two boundary conditions at each end.
Consider

I =
∫ x2

x1
F (x , y , y ′, y ′′)dx

Here y = y(x) (assumed to be continuous in x1 < x < x2), y ′ indicates
derivative of y(x) with respect to x ; ′′ indicates second derivative of y(x)
with respect to x , and F , called the Lagrange function or Lagrangian, is a
function of x , y , y ′ and y ′′

Objective:

Determine y(x) that will make I to be stationary.
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Lagrangian with Second Derivatives (contd...)

δI =
∫ x2

x1

(
∂F

∂y
δy +

∂F

∂y ′
δy ′ +

∂F

∂y ′′
δy ′′

)
dx

+ higher order terms

= δ(1)I + higher order terms

For I to have a stationary value δ(1) must vanish i .e. δ(1) = 0.

∫ x2

x1

(
∂F

∂y
δy +

∂F

∂y ′
δy ′ +

∂F

∂y ′′
δy ′′

)
dx = 0
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Lagrangian with Second Derivatives (contd...)

Integrating the second term by parts and using the fact that

δ

(
dy

dx

)
=

d(δy)

dx

yield: ∫ x2

x1

∂F

∂y ′
δy ′(x)dx =

∂F

∂y ′
δy(x)

∣∣∣∣x2
x1

−
∫ x2

x1

d

dx

(
∂F

∂y ′

)
δy(x)dx

Similarly, integrating the third term by parts and using the fact that

δ

(
d2y

dx2

)
=

d2(δy)

dx2

yield:∫ x2

x1

∂F

∂y ′′
δy ′′(x)dx =

∂F

∂y ′′
δy ′(x)

∣∣∣∣x2
x1

−
∫ x2

x1

d

dx

(
∂F

∂y ′′

)
δy ′(x)dx
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Lagrangian with Second Derivatives (contd...)

Performing the integration by parts one more time, we get:∫ x2

x1

∂F

∂y ′′
δy ′′(x)dx =

∂F

∂y ′′
δy ′(x)

∣∣∣∣x2
x1

− d

dx

(
∂F

∂y ′′

)
δy(x)

∣∣∣∣x2
x1

+
∫ x2

x1

d2

dx2

(
∂F

∂y ′′

)
δy(x)dx

Combining:

δ(1)I =
∂F

∂y ′′
δy ′(x)

∣∣∣∣x2
x1

+

[
∂F

∂y ′
− d

dx

(
∂F

∂y ′′

)]
δy(x)

∣∣∣∣x2
x1

+
∫ x2

x1

[
∂F

∂y
− d

dx

(
∂F

∂y ′

)
+

d2

dx2

(
∂F

∂y ′′

)]
δy(x)dx
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Lagrangian with Second Derivatives (contd...)

For I to be stationary, we want δ(1)I = 0.This yields:

∂F

∂y ′′
δy ′(x)

∣∣∣∣x2
x1

+

[
∂F

∂y ′
− d

dx

(
∂F

∂y ′′

)]
δy(x)

∣∣∣∣x2
x1

+
∫ x2

x1

[
∂F

∂y
− d

dx

(
∂F

∂y ′

)
+

d2

dx2

(
∂F

∂y ′′

)]
δy(x)dx = 0

Note that δy(x), and δy ′(x) at a given end are arbitrary and independent
of each other.

The above equation has to be satisfied for all possible values of δy(x), and
δy ′(x) at the two ends, including all four of them being zero i .e. δy(x1) = 0,
δy(x2) = 0, δy ′(x1) = 0, and δy ′(x2) = 0.
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Lagrangian with Second Derivatives (contd...)

This means:

∂F

∂y ′′
δy ′(x)|x2x1 = 0

[
∂F

∂y ′
− d

dx

(
∂F

∂y ′′

)]
δy(x)|x2x1 = 0

∫ x2

x1

[
∂F

∂y
− d

dx

(
∂F

∂y ′

)
+

d2

dx2

(
∂F

∂y ′′

)]
δy(x)dx = 0
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Lagrangian with Second Derivatives (contd...)

From the First Equation, either

δy ′ = 0 or
∂F

∂y ′′
= 0

First Condition

y is specified → Essential Boundary Condition

Second Condition → Natural or Force Boundary Condition

General Case

∂F

∂y ′′
may be specified and additional (boundary) term y ′ in the function
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Lagrangian with Second Derivatives (contd...)

From the Second Equation, either

δy = 0 or
[

∂F

∂y ′
− d

dx

(
∂F

∂y ′′

)]
= 0

First Condition

y is specified → Essential Boundary Condition

Second Condition → Natural or Force Boundary Condition

General Case[
∂F

∂y ′
− d

dx

(
∂F

∂y ′′

)]
may be specified and additional (boundary) term y in

the function
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Lagrangian with Second Derivatives (contd...)

From the Third Term also being zero, the Euler-Lagrange equation is ob-
tained by using the fact that variation δy(x) is a slowly varying, arbitrary
function of x.

[
∂F

∂y
− d

dx

(
∂F

∂y ′

)
+

d2

dx2

(
∂F

∂y ′′

)]
= 0

The Euler-Lagrange equation for this case will be a fourth-order ordinary
differential equation.
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Example

The Total Potential energy of the system is:

Π =
1

2

∫ L

0

[
EI (x)

(
d2w

dx2

)2

−N

(
dw

dx

)2
]
dx −

∫ L

0
p(x)w(x)dx

Determine the Euler-Lagrange equations along with the associated boundary
conditions.
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Example (contd...)

The Strain Energy of the system is,

U =
1

2

∫ L

0

[
EI (x)

(
d2w

dx2

)2
]
dx

The Potential of Compressive Load is,

Let uN be the inward axial
displacement of the right
end due to transverse
deflection.
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Example (contd...)

Now in order to determine uN , zooming into the ′AB ′ section of the beam,

Here,

δu = dx − dx ′

From the figure,

=
[
dx −

√
dx2 −

(dw
dx

)2
dx2
]

' dx [1− 1 +
1

2

(dw
dx

)2
] ' 1

2

(dw
dx

)2
dx

uN =
1

2

∫ L

0

(dw
dx

)2
dx
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Example (contd...)

We have

F =
1

2

[
EI (x)

(
d2w

dx2

)2

−N

(
dw

dx

)2
]
− p(x)w(x)

dF

dw
= −p

dF

dw ′
=

1

2
.2(−N)

dw

dx

dF

dw ′′
=

1

2
.2EI (x)

d2w

dx2
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Example

The governing equation thus becomes:

−p(x)− d

dx

[
−N dw

dx

]
+

d2

dx2

[
EI (x)

d2w

dx2

]
= 0

This simplifies to:

d2

dx2

[
EI (x)

d2w

dx2

]
+

d

dx

[
N
dw

dx

]
= p(x)
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Example (contd...)

The boundary conditions at x = L are:

N
dw

dx
+

d

dx

[
EI (x)

d2w

dx2

]
= 0

EI (x)
d2w

dx2
= 0

Both the boundary conditions at x = L are natural boundary conditions.
The boundary conditions at x = 0 are:

w = 0
dw

dx
= 0

The two boundary conditions at x = 0 are both essential boundary con-
ditions.
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